Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
BMC Infect Dis ; 22(1): 754, 2022 Sep 28.
Article in English | MEDLINE | ID: covidwho-2053874

ABSTRACT

BACKGROUND: Tuberculosis (TB) represents a significant public health threat in India. Adherence to antitubercular therapy (ATT) is the key to reducing the burden of this infectious disease. Suboptimal adherence to ATT and lack of demonstrated feasibility of current strategies for monitoring ATT adherence highlights the need for alternative adherence monitoring systems. METHODS: A quantitative survey was conducted to assess the acceptance of and willingness to use a digital pill system (DPS) as a tool for monitoring ATT adherence among stakeholders directly involved in the management of patients with TB in India. Participants reviewed a video explaining the DPS and completed a survey, which covered sociodemographics, degree of involvement with TB patients, initial impressions of the DPS, and perceived challenges for deploying the technology in India. Participants were also asked to interpret mock DPS adherence data. RESULTS: The mean age was 34.3 (SD = 7.3), and participants (N = 50) were predominantly male (70%). The sample comprised internists (52%) and pulmonologists (30%), with a median of 4 years' experience (IQR 3, 6) in the management of TB patients. No participants had previously used a DPS, but some reported prior awareness of the technology (22%). Most reported that they would recommend use of a DPS to patients on ATT (76%), and that they would use a DPS in both the intensive and continuation phases of TB management (64%). The majority viewed the DPS (82%) as a useful alternative to directly observed therapy-short course (DOTS), particularly given the ongoing COVID-19 pandemic. Participants reported that a DPS would be most effective in patients at risk of nonadherence (64%), as well as those with past nonadherence (64%). Perceived barriers to DPS implementation included lack of patient willingness (92%), cost (86%), and infrastructure constraints (66%). The majority of participants were able to accurately interpret patterns of adherence (80%), suboptimal adherence (90%), and frank nonadherence (82%) when provided with mock DPS data. CONCLUSIONS: DPS are viewed as an acceptable, feasible, and useful technology for monitoring ATT adherence by stakeholders directly involved in TB management. Future investigations should explore patient acceptance of DPS and pilot demonstration of the system in the TB context.


Subject(s)
Biosensing Techniques , COVID-19 , Tuberculosis , Adult , Antitubercular Agents/therapeutic use , Directly Observed Therapy , Female , Humans , Male , Medication Adherence , Pandemics , Tuberculosis/drug therapy
2.
Viruses ; 13(8)2021 07 31.
Article in English | MEDLINE | ID: covidwho-1376989

ABSTRACT

Rodents (order Rodentia), followed by bats (order Chiroptera), comprise the largest percentage of living mammals on earth. Thus, it is not surprising that these two orders account for many of the reservoirs of the zoonotic RNA viruses discovered to date. The spillover of these viruses from wildlife to human do not typically result in pandemics but rather geographically confined outbreaks of human infection and disease. While limited geographically, these viruses cause thousands of cases of human disease each year. In this review, we focus on three questions regarding zoonotic viruses that originate in bats and rodents. First, what biological strategies have evolved that allow RNA viruses to reside in bats and rodents? Second, what are the environmental and ecological causes that drive viral spillover? Third, how does virus spillover occur from bats and rodents to humans?


Subject(s)
Chiroptera/virology , Disease Reservoirs/virology , Rodentia/virology , Virus Diseases/transmission , Zoonoses/virology , Animals , Disease Outbreaks , Humans , Zoonoses/transmission
SELECTION OF CITATIONS
SEARCH DETAIL